
IS
TO

CK
PH

O
TO

14 BETTER SOFTWARE SEPTEMBER/OCTOBER 2012 www.TechWell.com

http://www.techwell.com

and unclear to team members. By gamifying decision making,
the SDG helps software development teams determine and re-
cord their internal practices and their mix of technology, pro-
cess, and tools. It can also serve as a framework to adapt ex-
isting policy and practices or to implement suggested changes
for improvement after a team retrospective.

While both of us have been influenced by game theory
concepts when leading software development efforts, it was
David who decided to create a software development game
framework based on the game Nomic by Peter Suber [3].
Nomic is a game about decision making where players agree
on an initial rule set to govern game play, then they raise and
vote on proposals to change the rules. So, changing the rules
of the game is considered a valid move. Nomic is frequently
played online, and games adapt over time as the players incor-
porate new ideas and changes. This is a great fit for dynamic
software development teams that are frequently confronted
with changing environments.

Rules of Play
To implement an SDG instance, a software development

team starts with a minimal set of rules and an initial goal to
create a learning organization—a group of people who con-
tinually enhance their capabilities to create what they want
to create [4]. Where the game evolves from there is entirely
up to the players (team members), but if it goes well, they be-
come more productive and efficient and make better decisions
as the game progresses. The SDG can start at any level—ex-
ecutive, management, teams, or individuals. Later, the game
can expand to include more players and teams as it proves its
usefulness.

David started as the facilitator. He created the game con-
cept and educated team members on the process and the goals
of the game. Once David had management buy in and the
team agreed to try it out, he explained the initial rule set to
govern game play and set up a meeting to see if all team mem-
bers agreed to the rule set. A game page was created on the
development team wiki describing the initial rule set.

Explanation of rulEs:
Rule 1: The initial goal of the game is to create a learning

organization that enables the players to make high-quality
choices and decisions. This rule should likely be refined to
integrate the mission of the organization playing the game, as
we specified above.

How can serious software development be treated like a
game? While you may play games for fun in your spare time,
games are also serious business. Sports have professional
leagues that support entire industries around their games. The
military uses war games to test strategies and train soldiers.
The SDG has been influenced by both game theory [1] (al-
though we aren’t using any formal mathematical modeling)
and a more recent concept called gamification [2].

Game theory is a mathematical discipline used for mod-
eling areas as diverse as economics, war, business, artificial
intelligence, and biological evolution. At its core, game theory
views every situation involving cooperation and conflict as a
game. Some games have a defined time limit of play and a
clear winner and loser, while others are experience based and
ongoing—like a quest.

Recently, a movement called the gamification of work has
become popular. Gamification involves imposing a game-like
structure on certain aspects of professional situations to aid in
productivity and motivation. Gamification can be as simple as
offering rewards for completing certain tasks, or as complex
as transforming an entire business practice into a game-like
system. Because we can be so productive while performing re-
petitive tasks within social or gaming situations, researchers
are trying to figure out how to tap into that potential to mo-
tivate within the workplace. (Gamification of work and game
theory are not necessarily related, but there is an overlap. Un-
derstanding game theory can help gamification efforts, and
gamification ideas can enhance game theory implementation.)

On software development teams, the team vision, purpose,
rules of conduct, and informal practices are often created and
enforced informally. This can result in confusion about the mis-
sion and purpose of the development team within the organiza-
tion. At best, this informality leads to misunderstandings and
communication breakdown; at worst, it results in a poor align-
ment to leadership’s goals for the organization. Either way,
both the team members and the organizations lose out when
there is wasted effort that isn’t contributing to value creation.

While formal game theory involves the use of mathe-
matical models, analyzing gaming behavior is also effective.
We have studied one aspect of game theory that looks at how
people optimize their decision processes. In the SDG, we use
game-like processes to help teams align with goals, provide
clarity and coherence on issues, and offer visibility into the
decision-making process. The SDG provides structure and ac-
countability on a process that is frequently ad hoc, political,

 www.TechWell.com SEPTEMBER/OCTOBER 2012 BETTER SOFTWARE 15

M
any teams struggle to choose or adapt a software development process.

We’ve developed a process strategy called the software development

game (SDG) for managing the mix of process, tools, and technology on

software development teams. SDG lets you pick a process—any process—and, using

gaming concepts, helps you adapt it to your own needs.

http://www.techwell.com

Rule 2: All players must unanimously agree to all rule
changes. The voting rule initially specifies unanimity to pass
any proposal. Most games amend this early on to specify
some sort of majority vote in order to avoid stalemates, but
the initial rule errs on the side of caution so that the founda-
tions can be laid out carefully.

Rule 3: Proposals may add, amend, or repeal a rule. This
describes the initial set of “moves” that can be made in the
game—introducing a new rule, changing an existing rule, or
removing an existing rule. The game will usually evolve more
sophisticated rules, such as giving certain classes of players the
right to veto vote under some conditions; creating a category
of immutable rules that cannot be amended (unless they are
removed from that category); and introducing new types of
acts such as resolutions, goals, standards, and guidelines.

Rule 4: All rules should be logically self-consistent. En-
suring that rules are logically self-consistent helps encourage
fair play and motivates the players to keep the rule set sane.
Whenever an inconsistency is introduced (accidentally or by
design), the players will be motivated to resolve the inconsis-
tency by amendment or repeal.

David then guided the team through initial game play.
After agreeing on the initial rule set, the team set to work on
solving a difficult issue: determining C++ coding standards for
the team. Choosing coding standards can be one of the most
contentious issues any development team can face. (Those of
you who code for a living understand how difficult this can
be; those of you who don’t, imagine trying to find compro-
mise between opposing political parties or religions.)

A proposal for a coding standard was put forward and
voted in with a majority. After the vote and resolution,
meeting details and the coding standard resolution were re-
corded on the development team wiki. By bringing the coding
standards into the game, they now became rules of the game
itself. By bringing software development policy and practices
into the game, the team created a mechanism to follow and
govern changes.

Evolving the Game
The SDG requires a framework for communication,

raising issues, creating proposals to vote on, holding votes,
and tallying results. David used a combination of a wiki, face-
to-face meetings, email, and in-office instant messaging. In his
role as facilitator, he answered questions, explained concepts,
and watched for potential team issues that could be brought
under the SDG.

For example, if a team member was complaining to col-
leagues about a lack of standards around builds, David would
ask that person if the issue was important enough to be solved
by the team. If it was, then he encouraged the team member
to bring a proposal to the team so they could vote on it. A
proposal could be as simple as: “Broken builds are a serious
productivity issue. Some of us are spending hours trying to
fix the build instead of completing tasks. We need to agree
to fix the build problem and come up with ideas to address
the problem.” While that might seem like a simple proposi-
tion to pass because it’s easy to agree to solve a problem, the
hard part is actually doing something about it. If a proposal is
vague, team members will offer up ideas and alternatives, and
proposal clarification is a natural outcome. A proposal can
become more concrete through discussion and debate. Ideally,
the team will generate proposals with ownership and respon-
sibility assigned to team members. From our prior example, a
more specific proposal that would be actionable is: “Broken
builds must be fixed before any new code is committed to the
version control system.”

Thinking up solutions for problems can take time and can
cause a face-to-face meeting to drag out. Furthermore, some
personality types think better outside of a group and may ap-
proach team members after a face-to-face meeting.

The team agreed to use technology to make the process
more efficient—proposals and votes on them could be initi-
ated and executed electronically. If a proposal required more
information than could be conveyed in email or was of a
serious nature, the facilitator could initiate a face-to-face
meeting to hear the proposal and hold a vote.

Now, imagine that you are the DevOps team member who
has come up with a proposal to fix the build problem. You’re
the team member who feels the broken build pain the most,
and your potential solution works well. You’ve tested it out
and your findings are positive. You explain your proposal to
adopt a solution within the SDG, but you fail to get a ma-
jority vote. You are disappointed, and no other alternatives
received a majority vote. You know this is the right way to go,
so what do you do? If you want the vote, you will need to do
what people in politics do and lobby for support.

•	 Educate	team	members	on	the	merits	of	your	proposal.
•	 Try	to	get	key,	influential	people	on	your	side	to	vote	

for the proposal.
•	 Appeal	to	the	skeptics:	How about a proposal to iden-

tify measurable outcomes and do periodic checks on
the system to see if it is solving problems or not?

•	 Make	a	formal	proposal	and	vote.	

16 BETTER SOFTWARE SEPTEMBER/OCTOBER 2012 www.TechWell.com

“If a proposal is vague, team members will offer up ideas and

alternatives, and proposal clarification is a natural outcome.

A proposal can become more concrete through

discussion and debate.”

http://www.techwell.com

•	 Hope	your	 lobbying	 efforts	pay	off	 and	 the	proposal	
passes.

Once team members are comfortable with the process, it
doesn’t take long for them to realize that any proposal can be
brought forward—even the most self-serving ones. If there is
team consensus to implement a change, the motivation behind
it doesn’t matter. It might be as simple as one team member
becoming bored with the current technology and wanting to
move to something new. It might seem selfish to say, “I don’t
want to work on Java web apps that much anymore. I’d love
to work on mobile projects.” But if it is brought up in a forum,
you’d be surprised how many others on the team feel the same
way, including managers and product managers. Management
may feel the organization needs to move to new technology
to not fall behind, and product managers may be researching
what competitors are doing, but neither group wants to
bother the busy development team about it right now.

Without a forum to raise an issue openly and honestly, this
kind of idea goes underground. In the worst case, it festers as
a frustrated team member complains to others or attempts to
use subversive or manipulative methods to try out a new tech-
nology platform. Once the right stakeholders are informed
and they buy in to a proposal, it can be a powerful technique
to introduce change, even with self-serving motivations.

Once David’s team had proposed and voted on a number
of resolutions, the rule set expanded. This required catego-
rization. Two potential categories are rules that govern the
game itself, and rules that govern software development ac-
tivities. In addition to the initial SDG rules, rules were added
to govern rule changes, proposals (create or withdraw pro-
posals), voting rules (what constitutes majority), and multi-
votes (tie breakers, etc.). For the software development ac-
tivities, rules were grouped according to team policies (vision
statement, processes to follow) and development standards
(coding standards, code reviews, and build and testing activi-
ties). As the rule set expanded, roles were added so that team
players could have ownership in certain areas of the game
based on their expertise and interest level. For example, roles
can involve facilitating game play itself, overseeing technical
components of the software development system, and guiding
product direction. Roles were expanded to include managers
and other stakeholders when their participation was needed.

The SDG evolved further to include gamification aspects
for repeated tasks. Achievements for repeated tasks that
might not be that pleasant were added as quests in the game.
For example, business travel can be difficult and tiring, so
the team decided to reward the top travelers on the team by
giving them a shout out on the team wiki. There also were
humorous booby prizes awarded to the last person who set
off the building alarm or to the person who broke the build
the most frequently.

This particular SDG instance has evolved to incorporate
more and more of the daily life of the development team,
while providing structure around communicating issues and
making decisions on how to move forward.

 www.TechWell.com SEPTEMBER/OCTOBER 2012 BETTER SOFTWARE 17

Why It Works
This isn’t a one-team, one-time success story. David has

implemented several SDG instances on different teams at dif-
ferent companies over the past few years. We have found that
making the problem-solving and decision-making processes
visible helps improve communication and reduces confusion.
Much misunderstanding on development teams stems from
differing expectations about what the team or individuals
should accomplish and a lack of alignment toward organi-
zational goals. Since decisions are democratic—anyone can
table an issue, the team votes on all changes, and decisions
are binding—team members feel included and valued as inte-
gral parts of the process. The SDG provides a framework for
raising concerns and changing existing practices and tools in
a way that helps teams cope with the changes in their external
environment by adapting their internal practices as needed.
Furthermore, if the team finds that the game framework itself
isn’t working for them anymore, they change the rules to im-
prove it. Using game-like concepts in the workplace is a way
to harness the natural behavioral dynamics that occur within
groups. Since the game itself can be adapted, teams don’t find
themselves stuck with a rigid process that isn’t appropriate
for their new circumstances. Rules can be amended or even
repealed if they no longer add value.

Management and other leaders might be nervous about
the SDG at first. It should be clear for both management and
team members that the game only applies to areas over which
the development team has ownership. The team shouldn’t

ImplementIng Your own Software
Development game

1. Start off with simple game play rules (feel free to
use our example).

2. Use a facilitator to guide game play, manage
meetings, tally scores, and record and update
rules.

3. Start simple, and let the game evolve. Don’t try to
do too much.
•	 Develop	team	policy	and	alignment	to	

organizational goals.
•	 Consider	using	the	game	to	help	implement	

retrospective ideas.
4. Use the game to discover what your existing

processes are, record and ratify them, and make
them visible to all team members.

5. Don’t let the rules become unwieldy:
•	 Try	to	keep	rules	brief	and	lightweight.
•	 If	rules	are	too	numerous,	work	on	scaling	

them back.
6. As the game expands, introduce additional roles to

help with administration.

http://www.techwell.com

management can review when and why certain technical di-
rections were taken when proposals were voted in.

An SDG helps teams make decisions, particularly if the
teams are self-organizing. It also helps build team cohesion
and encourages diversity of opinion and healthy dissent. If
there are serious problems, an SDG can provide a framework
to help a team change course on projects and tasks to reach
organizational goals.

A fabulous place to start using an SDG is to help imple-
ment changes after a retrospective. How many times do we
have a great meeting after a release, outlining problems we
encountered and possible solutions, only to forget about

them until the next retrospective? In the
meantime, we didn’t do anything; we
were too busy working on tasks. We had
great intentions, but without a system to
help us decide on courses of action and
to measure progress, we forgot about
our solution ideas. With an SDG, ret-
rospective ideas can be implemented
through the game, rather than forgotten
until next time.

Conclusion
Software development processes can

be difficult concepts to apply broadly.
What worked for one team in its unique
context may not work for your team.
Adaptation is important in cases when
a team tries out a process and finds that
some practices don’t work or that key
components are completely absent. When
processes fail, a convenient response is
“You need to do what works for you and
your team.” That makes sense, but what
specific, concrete practices do you use
to find out what process works for you?
We’ve had good success figuring that out
for our teams by using the software de-
velopment game. {end}

jonathan@kohl.ca
davidmc@gmail.com

18 BETTER SOFTWARE SEPTEMBER/OCTOBER 2012 www.TechWell.com

For more on the following
topics go to
www.StickyMinds.com/
bettersoftware.
n	 References
n	 Further reading

contradict existing corporate policies or try to overturn deci-
sions made by leadership. For example, team members can’t
just go and vote themselves raises and bonuses or decide on
their own to scrap the existing product line. For areas that are
governed by other stakeholders, the team can bring issues to
their attention, but the existing organizational structure and
policies should remain intact. (If leaders want to add the game
to other areas, that is fine, but don’t try to use the game to
undermine them.) Leaders will find that the game can create
clarity and coherence of their vision of the company and
their product and service mix. Team alignment on actions and
goals may increase, and the transparency on decisions means

Contact training@alpi.com or 301.654.9200 ext. 403
for additional information and registration details

www.alpi.com

YoUR
SHiNE
time to

it’s

Technology and Methodology Courses
HP: Quality Center, QuickTest Professional, and LoadRunner

Microsoft: Test Manager, Coded UI , and Load Test

Test Process Improvement: Certification, IV&V, Test Metrics, and Testing
to CMMI & ISO Standards

Interactive Learning Method™

Bring your Workplace to the Classroom & Take the Classroom
to your Workplace™

Post Training Support
Refresher courses at no additional cost

Consulting services to help you quickly
implement the test tools and processes

Bulk Training Program
Savings of up to 40% on
training courses

Credits good for one year

ALPI’S TrAInIng OfferS:

Since 1993, ALPI has empowered clients with innovative solutions delivered by our staff
of flexible and creative professionals. Trainings are held at our state-of-the-art facility,
located just outside of the Nation’s Capital, or onsite at your company location.

Distinguish yourself from your peers
and gain a competitive edge

http://www.techwell.com
http://www.StickyMinds.com/bettersoftware
mailto:jonathan@kohl.ca
http://davidmc@gmail.com
http://www.alpi.com

